News

Saturday, May 31, 2014

Multilayer, microscale solar cells enable ultra-high efficiency power generation.


This gives Efficiency of 43.9%,Printing based assembly of quadruple junction,four terminal micro scale solar cells allows realization of extremely high efficiency modules.
The project involved a collaborative team of researchers at the University of Illinois and the photovoltaic companies Semprius and Solar Junction. According to the group’s paper.
For more details >>> Click Here<<<<<<<
The project involved a collaborative team of researchers at the University of Illinois and the photovoltaic companies Semprius and Solar Junction. According to the group’s paper, the module’s top cell consists of a three-junction (3J) microcell with its own anti-reflective coating to ensure efficient transmission of light to the uppermost layers. The bottom cell uses a diffused-junction germanium (Ge) architecture. In a stacked 3J/Ge assembly, the top 3J cell captures light with wavelengths between 300 nm and 1,300 nm. Wavelengths from 1,300 nm to 1,700 nm pass through to the bottom Ge cell with minimal interface reflections, due to the use of a thin layer of a unique type of chalcogenide glass. - See more at: http://engineering.illinois.edu/news/article/7958#sthash.2yr50MuB.dpuf
“Printing-based assembly of quadruple-junction four-terminal microscale solar cells allows realization of extremely high-efficiency modules, - See more at: http://engineering.illinois.edu/news/article/7958#sthash.2yr50MuB.dpuf
“Printing-based assembly of quadruple-junction four-terminal microscale solar cells allows realization of extremely high-efficiency modules, - See more at: http://engineering.illinois.edu/news/article/7958#sthash.2yr50MuB.dpuf
“This is a high-throughput, parallel assembly process that allows for simultaneous formation of arrays of stacked multi-junction cells in a fully automated step-and-repeat mode with high yields—greater than 95 percent—and accurate overlay registration. A newly developed interfacial material for these stacks enables ideal optical, electrical, and thermal properties. ” stated Xing Sheng, a postdoctoral fellow with Rogers’ research group and first author of the paper, “Printing-based assembly of quadruple-junction four-terminal microscale solar cells allows realization of extremely high-efficiency modules,” published this week in the journal Nature Materials. - See more at: http://engineering.illinois.edu/news/article/7958#sthash.2yr50MuB.dpuf
“This is a high-throughput, parallel assembly process that allows for simultaneous formation of arrays of stacked multi-junction cells in a fully automated step-and-repeat mode with high yields—greater than 95 percent—and accurate overlay registration. A newly developed interfacial material for these stacks enables ideal optical, electrical, and thermal properties. ” stated Xing Sheng, a postdoctoral fellow with Rogers’ research group and first author of the paper, “Printing-based assembly of quadruple-junction four-terminal microscale solar cells allows realization of extremely high-efficiency modules,” published this week in the journal Nature Materials. - See more at: http://engineering.illinois.edu/news/article/7958#sthash.2yr50MuB.dpuf
“This is a high-throughput, parallel assembly process that allows for simultaneous formation of arrays of stacked multi-junction cells in a fully automated step-and-repeat mode with high yields—greater than 95 percent—and accurate overlay registration. A newly developed interfacial material for these stacks enables ideal optical, electrical, and thermal properties. ” stated Xing Sheng, a postdoctoral fellow with Rogers’ research group and first author of the paper, “Printing-based assembly of quadruple-junction four-terminal microscale solar cells allows realization of extremely high-efficiency modules,” published this week in the journal Nature Materials. - See more at: http://engineering.illinois.edu/news/article/7958#sthash.2yr50MuB.dpuf
“This is a high-throughput, parallel assembly process that allows for simultaneous formation of arrays of stacked multi-junction cells in a fully automated step-and-repeat mode with high yields—greater than 95 percent—and accurate overlay registration. A newly developed interfacial material for these stacks enables ideal optical, electrical, and thermal properties. ” stated Xing Sheng, a postdoctoral fellow with Rogers’ research group and first author of the paper, “Printing-based assembly of quadruple-junction four-terminal microscale solar cells allows realization of extremely high-efficiency modules,” published this week in the journal Nature Materials. - See more at: http://engineering.illinois.edu/news/article/7958#sthash.2yr50MuB.dpuf

No comments:

Post a Comment